<u>Mississippi State Department of Health</u> Bureau of Public Water Supply

Calendar Year 2008 Consumer Confidence Report Certification Form (Revised 6/24/09)

Lurand Utility District	
Public Public Water Supply Name	
0140009	
List PWS ID#s for all Water Systems Covered by This CCR	
The Federal Safe Drinking Water Act required each community public water system to develop and distribute a consumer confidence report (CCR) to its customers each year. Depending on the population served by the public water system, this must be mailed to the customers, published in a newspaper of local circulation, or provided to the customers upon request.	s CCR
Please Answer the Following Questions Regarding the Consumer Confidence Report	
Customers were informed of availability of CCR by: (Attach a copy of publication, water bill, or other) Advertisement in local paperOn water bills Other)
Date Customers were informed: 6/30/09.	
CCR was distributed by mail or other direct delivery. Specify other direct delivery methods:	_
CCR was published in local newspaper. (Attach a copy of published CCR & proof of publication) Name of Newspaper: Date Published: / / /	
CCR was posted in public places. (Attach list of locations) Date Posted:/	
CCR was posted on a publicly accessible internet site at the address: www	
CERTIFICATION I hereby certify that a consumer confidence report (CCR) has been distributed to the customers of this public we system in the form and manner identified above. I further certify that the information included in this CCR is to correct and is consistent with the water quality monitoring data provided to the public water system officials by Mississippi State Department of Health, Bureau of Public Water Supply.	rue and
1-6-09	3 €
Name/Title (President, Mayor, Owner, etc.) Date	
Mail Completed Form to: Bureau of Public Water Supply/POB 1700/Jackson, MS 39215	. 9
Brian W. Amy, MD, MHA, MPH * STATE HEALTH OFFICER	西路
Name/Title (President, Mayor, Owner, etc.) Mail Completed Form to: Bureau of Public Water Supply/POB 1700/Jackson, MS 39215 Brian W. Amy, MD, MHA, MPH * STATE HEALTH OFFICER 570 East Woodrow Wilson * Post Office Box 1700 * Jackson, MS 39215-1700 601-576-7634 * Fax 601-576-7931 * www.HealthyMS.com	PRECEIVED-WATER SUPPLY
Equal Opportunity in Employment/Services	~ <

2008 Consumer Confidence Report (Revised 6/24/09)109 JUL -9 AM 8: 36

Is my water safe?

Last year, as in years past, your tap water met all U.S. Environmental Protection Agency (EPA) and state drinking water health standards. Local Water vigilantly safeguards its water supplies and once again we are proud to report that our system has not violated a maximum contaminant level or any other water quality standard.

Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

Where does my water come from?

The Lu-Rand Utility District water source consists of two wells that draw from the Meridian-Upper Wilcox Aquifer.

Source water assessment and its availability

A source water assessment has been completed for the Lu-Rand Utility District's water supply to determine the overall susceptibility of its drinking water to identify potential sources of contamination. A report containing detailed information has been received by Lu-Rand Utility District and is available for review upon request. The water supply for Lu-Rand received a moderate susceptibility ranking to contamination.

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity: microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses; organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems; and radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

How can I get involved?

If you have any questions about this report or concerning your water utility, please contact Laurine Bentley 662-627-5491. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on the first Tuesday at 7PM at the Evelyn Mullens residence at 8925 Hwy. 49 South.

Conservation Tips

Did you know that the average U.S. household uses approximately 350 gallons of water per day? Luckily, there are many low-cost or no-cost ways to conserve water. Water your lawn at the least sunny times of the day. Fix toilet and faucet leaks. Take short showers - a 5 minute shower uses 4 to 5 gallons of water compared to up to 50 gallons for a bath. Turn the faucet off while brushing your teeth and shaving; 3-5 gallons go down the drain per minute. Teach your kids about water conservation to ensure a future generation that uses water wisely. Make it a family effort to reduce next month's water bill!

****A MESSAGE FROM MSDH CONCERNING RADIOLOGICAL SAMPLING****

In accordance with the Radionuclides Rule, all community public water supplies were required to sample quarterly for radionuclides beginning January 2007 - December 2007. Your public water supply completed sampling by the scheduled deadline; however, during an audit of the Mississippi State Department of Health Radiological Health Laboratory, the Environmental Protection Agency (EPA) suspended analyses and reporting of radiological compliance samples and results until further notice.

Although this was not the result of inaction by the public water supply, MSDH was required to issue a violation. The Bureau of Public Water Supply is taking action to resolve this issue as quickly as possible. If you have any questions, please contact Melissa Parker, Deputy Director, Bureau of Public Water Supply, at 601-576-7518.

Monitoring and reporting of compliance data violations

Lead and Copper Rule Violations

We are required to monitor your drinking water for specific constituents. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. Beginning 2006 through 2008, the Mississippi Department of Health (MSDH) required public water systems to monitor/test for lead and copper as required by the Lead and Copper Rule. Our water system failed to complete these monitoring requirements: therefore, we cannot be sure of your water quality during this particular time.

Total Coliform Violation:

Our system received a minor monitoring violation of the Total Coliform Rule for failing to collect the required number of samples in May 2008. Without sampling, our system's water quality cannot be adequately evaluated. Failure to sample does not represent a health risk and we're happy to report this problem has not reoccurred.

Disinfection By-Products:

(82) Total Trihalomethanes (TTHMs). Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer.

Our system violated the Disinfection By-Products Rule by exceeding the MCL for TTHMs in the 2nd and 3rd quarters of 2008. We have learned through our monitoring and testing that some constituents have been detected, however, the EPA has determined that your water is safe at these levels.

Additional Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Lu-Rand Utility District is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Lu-Rand Utility District is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. The Mississippi State Department of Health Public Health Laboratory offers lead testing for \$10.00 per sample. Please contact 601-576-7582 if you wish to have your water tested.

Water Quality Data Table

The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. The presence of contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently.

	MCLG	MCL,				era.		
	or	TT, or	Your	Ra	nge	Sample		
Contaminants	MRDLG	MRDL	Water	Low	<u>High</u>	Date	<u>Violation</u>	Typical Source
Disinfectants & Disinfect	tion By-Pro	ducts						
(There is convincing evide	ence that add	lition of a c	disinfectant is	s necess	ary for co	ontrol of mi	crobial contai	minants.)
Chlorine (as CI2) (ppm)	4	4	0.18	0.17	0.5	2008	No	Water additive used to control microbes
Inorganic Contaminants								
Arsenic (ppb)	0	10	2.601	2.33	2.601	2008	No	Erosion of natural deposits; Runoff
raseare (Pres)				6				from orchards; Runoff from glass and
								electronics production wastes
Barium (ppm)	2	2	0.022291	0.02	0.022	2008	No	Discharge of drilling wastes; Discharge
Burrain (pp.i.)				1067	291			from metal refineries; Erosion of
								natural deposits
Chromium (ppb)	100	100	3.255	3.17	3.255	2008	No	Discharge from steel and pulp mills;
(H)				5				Erosion of natural deposits
Fluoride (ppm)	4	4	0.532	0.45	0.532	2008	No	Erosion of natural deposits; Water
Tractice (PP)				5				additive which promotes strong teeth;
								Discharge from fertilizer and aluminum
								factories
Nitrite [measured as	1	1	0.02	ND	0.02	2008	No	Runoff from fertilizer use; Leaching
Nitrogen] (ppm)								from septic tanks, sewage; Erosion of
- · O ····· , (I'F ·····)								natural deposits
Selenium (ppb)	50	50	11.233	10.2	11.23	2008	No	Discharge from petroleum and metal
413				63	3			refineries; Erosion of natural deposits;

- Committee of the Comm				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		** * * * * * * * * * * * * * * * * * * *	Discharge from mines
Contaminants	MCLG	<u>AL</u>	Your <u>Water</u>	Sample <u>Date</u>	# Samples Exceeding AL	Exceeds <u>AL</u>	Typical Source
Inorganic Contaminants							
Copper - action level at	1.3	1.3	0	2004	0	No	Corrosion of household plumbing
consumer taps (ppm)							systems; Erosion of natural deposits
Lead - action level at	0	15	2	2004	0	No	Corrosion of household plumbing
consumer taps (ppb)							systems; Erosion of natural deposits

Undetected Contaminants

The following contaminants were monitored for, but not detected, in your water.

	MCLG	MCL	X 7		
<u>Contaminants</u> Inorganic Contaminants	or <u>MRDLG</u>	or <u>MRDL</u>	Your <u>Water</u>	<u>Violation</u>	Typical Source
Antimony (ppb)	6	6	ND	No	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; test addition.
Beryllium (ppb)	4	4	ND	No	Discharge from metal refineries and coal-burning factories; Discharge from electrical, aerospace, and defense industries
Cadmium (ppb)	5	5	ND	No	Corrosion of galvanized pipes; Erosion of natural deposits; Discharge from metal refineries; runoff from waste batteries and paints
Cyanide [as Free Cn] (ppb)	200	200	ND	No	Discharge from plastic and fertilizer factories; Discharge from steel/metal factories
Mercury [Inorganic] (ppb)	2	2	ND	No	Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills; Runoff from cropland
Nitrate [measured as Nitrogen] (ppm)	10	10	ND	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Thallium (ppb)	0.5	2	ND	No	Discharge from electronics, glass, and Leaching from ore-processing sites; drug factories
Volatile Organic Contaminant 1,1,1-Trichloroethane (ppb)	s 200	200	ND	No	Discharge from metal degreasing sites and other factories
1,1,2-Trichloroethane (ppb)	3	5	ND	No	Discharge from industrial chemical factories
1,1-Dichloroethylene (ppb)	7	7	ND	No	Discharge from industrial chemical factories
1,2,4-Trichlorobenzene (ppb)	70	70	ND	No	Discharge from textile-finishing factories
1,2-Dichloroethane (ppb)	0	5	ND	No	Discharge from industrial chemical factories
1,2-Dichloropropane (ppb)	0	5	ND	No	Discharge from industrial chemical factories
Benzene (ppb)	0	5	ND	No	Discharge from factories; Leaching from gas storage tanks and landfills
Carbon Tetrachloride (ppb)	0	5	ND	No	Discharge from chemical plants and other industrial activities
Chlorobenzene (monochlorobenzene) (ppb)	100	100	ND	No	Discharge from chemical and agricultural chemical factories
cis-1,2-Dichloroethylene (ppb)	70	70	ND	No	Discharge from industrial chemical factories
Dichloromethane (ppb)	0	5	ND	No	Discharge from pharmaceutical and chemical factories
Ethylbenzene (ppb)	700	700	ND	No	Discharge from petroleum refineries
o-Dichlorobenzene (ppb)	600	600	ND	No	Discharge from industrial chemical factories
p-Dichlorobenzene (ppb)	75	75	ND	No	Discharge from industrial chemical factories
Styrene (ppb)	100	100	ND	No	Discharge from rubber and plastic factories; Leaching from landfills
Tetrachloroethylene (ppb)	0	5	ND	No	Discharge from factories and dry cleaners
Toluene (ppm)	1	1	ND	No	Discharge from petroleum factories
trans-1,2-Dicholoroethylene (ppb)	100	100	ND	No	Discharge from industrial chemical factories
Trichloroethylene (ppb)	0	5	ND	No	Discharge from metal degreasing sites and other factories
Vinyl Chloride (ppb)	0	2	ND	No	Leaching from PVC piping; Discharge from plastics factories
Xylenes (ppm)	10	10	ND	No	Discharge from petroleum factories; Discharge from chemical factories

Mississippi State Department of Health Bureau of Public Water Supply

Calendar Year 2008 Consumer Confidence Report Certification Form

0140009
List PWS ID#s for all Water Systems Covered by This CCR

The Federal Safe Drinking Water Act required each community public water system to develop and distribute a consumer

Lurand Utility District
Public Public Water Supply Name

must be mailed to the customers, published in a newspaper of local circulation, o	
Please Answer the Following Questions Regarding the Consumer Cor	afidence Report
Customers were informed of availability of CCR by: (Attach a cop	y of publication, water bill, or other)
Advertisement in local paper	
On water bills	
Other Data Customers were informed.	
Date Customers were informed:/	
CCR was distributed by mail or other direct delivery. Specify oth methods: mail	er direct delivery
methods: <u>Mail</u> Date Distributed: <u>6/19/09</u> .	
CCR was published in local newspaper. (Attach a copy of publis Name of Newspaper:Date Published:/	
CCR was posted in public places. (Attach list of locations) Date Posted:/	
CCR was posted on a publicly accessible internet site at the addres	s: www
CERTIFICATION	
I hereby certify that a consumer confidence report (CCR) has been distribu	ated to the customers of this public water
system in the form and manner identified above. I further certify that the i	
correct and is consistent with the water quality monitoring data provided to	o the public water system officials by the
Mississippi State Department of Health, Bureau of Public Water Supply.	
Million Bres.	6-19-09
Name/Title (President, Mayor, Owner, etc.)	Date

Equal Opportunity in Employment/Services

Mail Completed Form to: Bureau of Public Water Supply/POB 1700/Jackson, MS 39215

Brian W. Amy, MD, MHA, MPH * STATE HEALTH OFFICER

570 East Woodrow Wilson * Post Office Box 1700 * Jackson, MS 39215-1700 601-576-7634 * Fax 601-576-7931 * www.Healthy.MS.com

Lu-Rand Utility District PWS ID#0140009

Reid 6/24/09

2008 Consumer Confidence Report

Is my water safe?

Last year, as in years past, your tap water met all U.S. Environmental Protection Agency (EPA) and state drinking water health standards. Local Water vigilantly safeguards its water supplies and once again we are proud to report that our system has not violated a maximum contaminant level or any other water quality standard.

Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

Where does my water come from?

The Lu-Rand Utility District water source consists of two wells that draw from the Meridian-Upper Wilcox Aquifer.

Source water assessment and its availability

A source water assessment has been completed for the Lu-Rand Utility District's water supply to determine the overall susceptibility of its drinking water to identify potential sources of contamination. A report containing detailed information has been received by Lu-Rand Utility District and is available for review upon request. The water supply for Lu-Rand received a moderate susceptibility ranking to contamination.

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity: microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses; organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems; and radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

How can I get involved?

If you have any questions about this report or concerning your water utility, please contact Laurine Bentley 662-627-5491. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on the first Tuesday at 7PM at the Evelyn Mullens residence at 8925 Hwy. 49 South.

Conservation Tips

Did you know that the average U.S. household uses approximately 350 gallons of water per day? Luckily, there are many low-cost or no-cost ways to conserve water. Water your lawn at the least sunny times of the day. Fix toilet and faucet leaks. Take short showers - a 5 minute shower uses 4 to 5 gallons of water compared to up to 50 gallons for a bath. Turn the faucet off while brushing your teeth and shaving; 3-5 gallons go down the drain per minute. Teach your kids about water conservation to ensure a future generation that uses water wisely. Make it a family effort to reduce next month's water bill!

***** MESSAGE FROM MSDH CONCERNING RADIOLOGICAL SAMPLING*****

In accordance with the Radionuclides Rule, all community public water supplies were required to sample quarterly for radionuclides beginning January 2007 - December 2007. Your public water supply completed sampling by the scheduled deadline; however, during an audit of the Mississippi State Department of Health Radiological Health Laboratory, the Environmental Protection Agency (EPA) suspended analyses and reporting of radiological compliance samples and results until further notice.

Although this was not the result of inaction by the public water supply, MSDH was required to issue a violation. The Bureau of Public Water Supply is taking action to resolve this issue as quickly as possible. If you have any questions, please contact Melissa Parker, Deputy Director, Bureau of Public Water Supply, at 601-576-7518.

Monitoring and reporting of compliance data violations

Lead and Copper Rule Violations

We are required to monitor your drinking water for specific constituents. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. Beginning 2006 through 2008, the Mississippi Department of Health (MSDH) required public water systems to monitor/test for lead and copper as required by the Lead and Copper Rule. Our water system failed to complete these monitoring requirements: therefore, we cannot be sure of your water quality during this particular time.

Total Coliform Violation:

Our system received a minor monitoring violation of the Total Coliform Rule for failing to collect the required number of samples in May 2008. Without sampling, our system's water quality cannot be adequately evaluated. Failure to sample does not represent a health risk and we're happy to report this problem has not reoccurred.

Disinfection By-Products:

(82) Total Trihalomethanes (TTHMs). Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer.

Our system violated the Disinfection By-Products Rule by exceeding the MCL for TTHMs in the 2nd and 3rd quarters of 2008. We have learned through our monitoring and testing that some constituents have been detected, however, the EPA has determined that your water is safe at these levels.

Additional Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Lu-Rand Utility District is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Lu-Rand Utility District is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. The Mississippi State Department of Health Public Health Laboratory offers lead testing for \$10.00 per sample. Please contact 601-576-7582 if you wish to have your water tested.

Water Quality Data Table

The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. The presence of contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently.

MCLG MCL.

	WICLG	wice,						
	or	TT, or	Your	Ra	nge	Sample		
Contaminants	MRDLG	MRDL	Water	Low	High	<u>Date</u>	Violation	Typical Source
Disinfectants & Disinfe								
(There is convincing evi-	dence that add	dition of a	disinfectant i	s necess:	ary for co	ontrol of mi	crobial contai	minants.)
Chlorine (as Cl2) (ppm)	4	4	0.18	0.17	0.5	2008	No	Water additive used to control microbes
Inorganic Contaminan	ts							
Arsenic (ppb)	0	10	2.601	2.33 6	2.601	2008	No	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes
Barium (ppm)	2	2	0.022291	0.02 1067	0.022 291	2008	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Chromium (ppb)	100	100	3.255	3.17 5	3.255	2008	No	Discharge from steel and pulp mills; Erosion of natural deposits
Fluoride (ppm)	4	4	0.532	0.45 5	0.532	2008	No	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories
Nitrite [measured as Nitrogen] (ppm)	1	1	0.02	ND	0.02	2008	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Selenium (ppb)	50	50	11.233	10.2 63	11.23	2008	No	Discharge from petroleum and metal refineries; Erosion of natural deposits;

			Your	Sample	# Samples	Exceeds	Discharge from mines
Contaminants Inorganic Contaminants	MCLG	<u>AL</u>	Water	<u>Date</u>	Exceeding AL	AL	Typical Source
Copper - action level at consumer taps (ppm)	1.3	1.3	0	2004	0	No	Corrosion of household plumbing systems; Erosion of natural deposits
Lead - action level at consumer taps (ppb)	0	15	2	2004	0	No	Corrosion of household plumbing systems; Erosion of natural deposits

Undetected Contaminants

The following contaminants were monitored for, but not detected, in your water.

Contaminants Inorganic Contaminants	or <u>MRDLG</u>	or <u>MRDL</u>	Your <u>Water</u>	<u>Violation</u>	Typical Source
Antimony (ppb)	6	6	ND	No	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; test addition.
Beryllium (ppb)	4	4	ND	No	Discharge from metal refineries and coal-burning factories; Discharge from electrical, aerospace, and defense industries
Cadmium (ppb)	5	5	ND	No	Corrosion of galvanized pipes; Erosion of natural deposits; Discharge from metal refineries; runoff from waste batteries and paints
Cyanide [as Free Cn] (ppb)	200	200	ND	No	Discharge from plastic and fertilizer factories; Discharge from steel/metal factories
Mercury [Inorganic] (ppb)	2	2	ND	No	Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills; Runoff from cropland
Nitrate [measured as Nitrogen] (ppm)	10	10	ND	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Thallium (ppb)	0.5	2	ND	No	Discharge from electronics, glass, and Leaching from ore-processing sites; drug factories
Volatile Organic Contaminant 1,1,1-Trichloroethane (ppb)	200	200	ND	No	Discharge from metal degreasing sites and other factories
1,1,2-Trichloroethane (ppb)	3	5	ND	No	Discharge from industrial chemical factories
1,1-Dichloroethylene (ppb)	7	7	ND	No	Discharge from industrial chemical factories
1,2,4-Trichlorobenzene (ppb)	70	70	ND	No	Discharge from textile-finishing factories
1,2-Dichloroethane (ppb)	0	5	ND	No	Discharge from industrial chemical factories
1,2-Dichloropropane (ppb)	0	5	ND	No	Discharge from industrial chemical factories
Benzene (ppb)	0	5	ND	No	Discharge from factories; Leaching from gas storage tanks and landfills
Carbon Tetrachloride (ppb)	0	5	ND	No	Discharge from chemical plants and other industrial activities
Chlorobenzene (monochlorobenzene) (ppb)	100	100	ND	No	Discharge from chemical and agricultural chemical factories
cis-1,2-Dichloroethylene (ppb)	70	70	ND	No	Discharge from industrial chemical factories
Dichloromethane (ppb)	0	5	ND	No	Discharge from pharmaceutical and chemical factories
Ethylbenzene (ppb)	700	700	ND	No	Discharge from petroleum refineries
o-Dichlorobenzene (ppb)	600	600	ND	No	Discharge from industrial chemical factories
p-Dichlorobenzene (ppb)	75	75	ND	No	Discharge from industrial chemical factories
Styrene (ppb)	100	100	ND	No	Discharge from rubber and plastic factories; Leaching from landfills
Tetrachloroethylene (ppb)	0	5	ND	No	Discharge from factories and dry cleaners
Toluene (ppm)	1	1	ND	No	Discharge from petroleum factories
trans-1,2-Dicholoroethylene (ppb)	100	100	ND	No	Discharge from industrial chemical factories
Trichloroethylene (ppb)	0	5	ND	No	Discharge from metal degreasing sites and other factories
Vinyl Chloride (ppb)	0	2	ND	No	Leaching from PVC piping; Discharge from plastics factories
Xylenes (ppm)	10	10	ND	No	Discharge from petroleum factories; Discharge from chemical factories

Unit Descriptions	
<u>Term</u>	<u>Definition</u>
ppm	ppm: parts per million, or milligrams per liter (mg/L)
ppb	ppb: parts per billion, or micrograms per liter (μg/L)
NA	NA: not applicable
ND	ND: Not detected
NR	NR: Monitoring not required, but recommended.

1117	TVK. Wontornig not required, but recommended.
Important Drin	king Water Definitions
Term	<u>Definition</u>
MCLG	MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
MCL	MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
TT	TT: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.
AL	AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
Variances and Exemptions	Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions.
MRDLG	MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
MRDL	MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
MNR	MNR: Monitored Not Regulated
MPL	MPL: State Assigned Maximum Permissible Level

For more information please contact:
Lorienne Bentley
Address: POB 265 Clarksdale, MS 38614 662-627-5491

Lu-Rand Utility District PWS ID#0140009

2008 Consumer Confidence Report

Is my water safe?

Last year, as in years past, your tap water met all U.S. Environmental Protection Agency (EPA) and state drinking water health standards. Local Water vigilantly safeguards its water supplies and once again we are proud to report that our system has not violated a maximum contaminant level or any other water quality standard.

Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

Where does my water come from?

The Lu-Rand Utility District water source consists of two wells that draw from the Meridian-Upper Wilcox Aquifer.

Source water assessment and its availability

A source water assessment has been completed for the Lu-Rand Utility District's water supply to determine the overall susceptibility of its drinking water to identify potential sources of contamination. A report containing detailed information has been received by Lu-Rand Utility District and is available for review upon request. The water supply for Lu-Rand received a moderate susceptibility ranking to contamination.

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity: microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses; organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems; and radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

How can I get involved?

If you have any questions about this report or concerning your water utility, please contact Lorienne Bentley 662-627-5491. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on the first Tuesday at 7PM at the Evelyn Mullens residence at 8925 Hwy. 49 South.

Conservation Tips

Did you know that the average U.S. household uses approximately 350 gallons of water per day? Luckily, there are many low-cost or no-cost ways to conserve water. Water your lawn at the least sunny times of the day. Fix toilet and faucet leaks. Take short showers - a 5 minute shower uses 4 to 5 gallons of water compared to up to 50 gallons for a bath. Turn the faucet off while brushing your teeth and shaving; 3-5 gallons go down the drain per minute. Teach your kids about water conservation to ensure a future generation that uses water wisely. Make it a family effort to reduce next month's water bill!

***** MESSAGE FROM MSDH CONCERNING RADIOLOGICAL SAMPLING*****

In accordance with the Radionuclides Rule, all community public water supplies were required to sample quarterly for radionuclides beginning January 2007 - December 2007. Your public water supply completed sampling by the scheduled deadline; however, during an audit of the Mississippi State Department of Health Radiological Health Laboratory, the Environmental Protection Agency (EPA) suspended analyses and reporting of radiological compliance samples and results until further notice.

Although this was not the result of inaction by the public water supply, MSDH was required to issue a violation. The Bureau of Public Water Supply is taking action to resolve this issue as quickly as possible. If you have any questions, please contact Melissa Parker, Deputy Director, Bureau of Public Water Supply, at 601-576-7518.

Additional Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Lu-Rand Utility District is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Lu-Rand Utility District is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. The Mississippi State Department of Health Public Health Laboratory offers lead testing for \$10.00 per sample. Please contact 601-576-7582 if you wish to have your water tested.

Water Quality Data Table

The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. The presence of contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently.

	MCLG	MCL,				_		
	or	TT, or	Your	Ra	nge	Sample		
Contaminants	MRDLG	MRDL	<u>Water</u>	Low	High	Date	Violation	Typical Source
Disinfectants & Disinfect	tion By-Proc	lucts						
(There is convincing evide	ence that add	ition of a c	lisinfectant	is necessa	ry for co	entrol of mic	robial contar	minants.)
Chlorine (as Cl2) (ppm)	4	4	0.18	0.17	0.5	2008	No	Water additive used to control microbes
Inorganic Contaminants								
Arsenic (ppb)	0	10	2.601	2.33 6	2.601	2008	No	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes
Barium (ppm)	2	2	0.022291	0.02 1067	0.022 291	2008	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Chromium (ppb)	100	100	3.255	3.17 5	3.255	2008	No	Discharge from steel and pulp mills; Erosion of natural deposits
Fluoride (ppm)	4	4	0.532	0.45	0.532	2008	No	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories
Nitrite [measured as Nitrogen] (ppm)	1	1	0.02	ND	0.02	2008	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Selenium (ppb)	50	50	11.233	10.2 63	11.23	2008	No	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines
			Your	Sample	#	Samples	Exceeds	
Contaminants	MCLG	$\underline{\mathbf{AL}}$	Water	<u>Date</u>	Exc	eeding AL	$\underline{\mathbf{AL}}$	Typical Source
Inorganic Contaminants								
Copper - action level at	1.3	1.3	0	2004		0	No	Corrosion of household plumbing
consumer taps (ppm)		1.5		2004			NT.	systems; Erosion of natural deposits
Lead - action level at consumer taps (ppb)	0	15	2	2004		0	No	Corrosion of household plumbing systems; Erosion of natural deposits
communic tabs (bbo)			Undet	tactad	Conte	minante	2	systems, inosion of natural deposits

Undetected Contaminants

The following contaminants were monitored for, but not detected, in your water.

<u>Contaminants</u> Inorganic Contaminants	MCLG or MRDLG	MCL or <u>MRDL</u>	Your <u>Water</u>	<u>Violation</u>	Typical Source
Antimony (ppb)	6	6	ND	No	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; test addition.
Beryllium (ppb)	4	4	ND	No	Discharge from metal refineries and coal-burning factories; Discharge from electrical, aerospace, and defense industries

Cadmium (ppb)	5	5	ND	No	Corrosion of galvanized pipes; Erosion of natural
\$					deposits; Discharge from metal refineries; runoff from
					waste batteries and paints
Cyanide [as Free Cn] (ppb)	200	200	ND	No	Discharge from plastic and fertilizer factories;
					Discharge from steel/metal factories
Mercury [Inorganic] (ppb)	2	2	ND	No	Erosion of natural deposits; Discharge from refineries
					and factories; Runoff from landfills; Runoff from
					cropland
Nitrate [measured as Nitrogen]	10	10	ND	No	Runoff from fertilizer use; Leaching from septic
(ppm)					tanks, sewage; Erosion of natural deposits
Thallium (ppb)	0.5	2	ND	No	Discharge from electronics, glass, and Leaching from
					ore-processing sites; drug factories
Volatile Organic Contaminants					
1,1,1-Trichloroethane (ppb)	200	200	ND	No	Discharge from metal degreasing sites and other
					factories
1,1,2-Trichloroethane (ppb)	3	5	ND	No	Discharge from industrial chemical factories
1,1-Dichloroethylene (ppb)	7	7	ND	No	Discharge from industrial chemical factories
1,2,4-Trichlorobenzene (ppb)	70	70	ND	No	Discharge from textile-finishing factories
1,2-Dichloroethane (ppb)	00	5	ND	No	Discharge from industrial chemical factories
1,2-Dichloropropane (ppb)	0	5	ND	No	Discharge from industrial chemical factories
Benzene (ppb)	0	5	ND	No	Discharge from factories; Leaching from gas storage
					tanks and landfills
Carbon Tetrachloride (ppb)	0	5	ND	No	Discharge from chemical plants and other industrial
					activities
Chlorobenzene	100	100	ND	No	Discharge from chemical and agricultural chemical
(monochlorobenzene) (ppb)					factories
cis-1,2-Dichloroethylene (ppb)	70	70	ND	No	Discharge from industrial chemical factories
Dichloromethane (ppb)	0	5	ND	No	Discharge from pharmaceutical and chemical factories
Ethylbenzene (ppb)	700	700	ND	No	Discharge from petroleum refineries
o-Dichlorobenzene (ppb)	600	600	ND	No	Discharge from industrial chemical factories
p-Dichlorobenzene (ppb)	75	75	ND	No	Discharge from industrial chemical factories
Styrene (ppb)	100	100	ND	No	Discharge from rubber and plastic factories; Leaching
					from landfills
Tetrachloroethylene (ppb)	0	5	ND	No	Discharge from factories and dry cleaners
Toluene (ppm)	1	1	ND	No	Discharge from petroleum factories
trans-1,2-Dicholoroethylene	100	100	ND	No	Discharge from industrial chemical factories
(ppb)					
Trichloroethylene (ppb)	0	5	ND	No	Discharge from metal degreasing sites and other
					factories
Vinyl Chloride (ppb)	0	2	ND	No	Leaching from PVC piping; Discharge from plastics
41					factories
Xylenes (ppm)	10	10	ND	No	Discharge from petroleum factories; Discharge from
. 41					chemical factories
Unit Descriptions					

Unit Descriptions					
<u>Term</u>	<u>Definition</u>				
ppm	ppm: parts per million, or milligrams per liter (mg/L)				
ppb	ppb: parts per billion, or micrograms per liter (μg/L)				
NA	NA: not applicable				
ND	ND: Not detected				
NR	NR: Monitoring not required, but recommended.				

Important Drinking Water Definitions

Term	Definition
MCLG	MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or
	expected risk to health. MCLGs allow for a margin of safety.
MCL	MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as
	close to the MCLGs as feasible using the best available treatment technology.
TT	TT: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.
AL	AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a
	water system must follow.
Variances and	Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions.
Exemptions	
MRDLG	MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no
	known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial
	contaminants.
MRDL	MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is

	1	convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.]
0	MNR	MNR: Monitored Not Regulated	1
	MPL	MPL: State Assigned Maximum Permissible Level	1

For more information please contact:
Lorienne Bentley
Address:
POB 265
Clarksdale, MS 38614
662-627-5491